
D-R196 121 SEARCH REARRANGEMENT BCKTRCKIG OFTEN REWIRES
EXPONENTIAL TINE TO VERI..(U) INDIANA UNIY AT
BLOOMIINGTON DEPT OF COMPUTER SCIENCE J FRANCO

UNCLAfiSSIFIED 85 JUL 87 OFOSR-TR-87-1153 SRFOSR-84-9372 F/Q 12/4 NL

E j h~h~E



1111 .0 L -0" *2
L1.

1111I!25 1.1J. 6

MICROCOPY RESOLUTION TEST CHART

NAT TONAL BUREAU Of STANDARIb IT A

W. %% 
Z Z



w l, ,,", :,.q, :?-.-, -j-. 9. 7 1 7 -7-17K-7- 7

, )CUMENTATION PAGE -

Ia. REPOR SE A D -A 86 121 r. RESTR ICTIV.E O.ARK I NG ,S

2a SECURITY (3. DISTRIBUTIONI/AVAILABILITY OF REPORT

Zb. DECLASSIFICTNDO GRI mDL Approved for- 01shlic -ease;

4 CT 0 6 1987' distrif-Uti0 lfimited.
4PERFORMING ORGANIZATION REP BER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

a.NAME OF: PERFORMING ORGAN IZATION I6b. ICE SYMBOL 7a. NAME OF M )NITORING ORGANIZATION
IniaaUniversit (If applicable) V

6c. ADDRESS (City, State, and ZIP Code) 7b, AfliflSae and ZIP Code)

Bloomington, Indiana 47405 Bldg 410 *"-

aa. NAME OF FUNDING /SPONSORING 8.OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ~(f apicab4) AFO SR 84-"0372

AFOSR NM

sc. Z( f)WtyState, and ZIP Code)10SOREFFUDNNMBS

Blt~ 410 ELEMENT NO. NO. -NO. ACCESSION NO.
Boiling A.FB DC 20332-8448610Y24

11 TTE InldeSeuit Cas~ictonISearch Rearrangement Backtracking Often Requires.
Exponential Time to Verify Unsatisfiability

1.PERSONAL AUTHOR(S)jonFac

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPC "T (Year, Month, Day) S. PAGE COUNT
preprintl FROM __J8~4TO _J5_al July 5, 1987

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on revers if nec esary and identify by block number)
FIELD GROUP SUB-GROUP ~4 !

19 ABSTRACT (Cninue on reverse if necessary and identify by block number). b,--.

It is shown that any form of Search Rearrangement Backtracking (SRB) requires
exponential time to Verify the unsatisfiability of nearly all of a. wide, class of CNF boolean.

expressions. This result is based on an input model which generates n independent k-Literal
clauses from a set of r boolean variables. We assume that k is fixed and n and r tend to
infinity. The result holds ifjm z-,3 n/r(n) Ais fixed a-id 1 1> ln(2)/(- ln(1 .j))

-ealee-4-~ SRB quires superpolynomial time i e.rly always if - is replaced hy
= o~'"2J) ad sr~2~A~n) - th suervcyno-iial time result holds,fo

exampl''-. if A\(n) =(ln(n))J where 03 is any positive con.,t, tit). We-akc Tho these
restilts apj, '. any form of the Davis-Putnam Procedure. .

'-"--*-20. CiSTRIBUTION /AVALABILITY i- '.9STRACT 21, ABSTRACT Sr. URITY CLASSIFICATION
CUNCLASSIF!ED/UNLIMITED C3 A:' AS R PT C] OTIC USERS

12a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONF (Include Area Code) 22c. OFICE SYMBOL

Maj. John P. Thomas I'"' I
DO FORM 1473, 84 MAR B3 AP, ton may be used until exhausted. SECURIrY CLASSIFICATION OF -HIS PAGE

Al'it e editions are obsolete.

O1FILE COPY ~



Search Rearrangement Backtracking
Often Requires Exponential Time

To Verify Unsatisfiability

John Franco
Department of Computer Science

Indiana University
Bloomington, IN 47405

AFOsi-T " 8 7 1S5 3

Keywords:
. Satisfiability, Probabilistic Analysis, Davis-Putnam, NP-complete, Searching,

'4 Combinatorial Search

This material is based on work supported by the Air Force Office
of Scientific Research under Grant No. AFOSR 84-0372.

December 10, 1986 (Revised July 5, 1987)

-S.

5"$, ,, % % • • % ' -" " -W' - % % % ' 
"



ABSTRACT

It is shown that any form of Search Rearrangement Backtracking (SRB) requires
exponential time to verify the unsatisfiability of nearly all of a wide class of CNF boolean
expressions. This result is based on an input model which generates n independent k-literal
clauses from a set of r boolean variables. We assume that k is fixed and n and r tend to
infinity. The result holds if limn.,_ n/r(n) = A, is fixed and A > ln(2)/(- ln(1 - 2-k)).
We also show that SRB requires superpolynomial time nearly always if A is replaced by
\(n) = o(nI/l InIn(n)) and limn-. A(n) = oo (so the superpolynomial time result holds, for
example, if A(n) = (ln(n))O where 3 is any positive constant). We also show that these
results apply to any form of the Davis-Putnam Procedure.
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1. Introduction

The Satisfiability problem (SAT) is the problem of determining whether there exists an
assignment of values to boolean variables (a truth assignment) which causes a given boolean

expression I to have value true. A truth assignment which causes I to have value true is
called a satisfying truth assignment and is said to satisfy I. It is well known that SAT
is NP-hard. However, it has been shown that some algorithms solve SAT efficiently in
a probabilistic sense under certain conditions. These conditions are determined by the

parameters of the input models chosen for analysis.

The model we consider in this paper and denoted M(n, r, k) is the constant clause size
model for CNF boolean formulas. An Instance of SAT generated according to M(n, r, k)
is the conjunction of n k-literal clauses (disjunctions) each selected uniformly and with
replacement from the set of all k-literal clauses that can be composed from r boolean
variables with the property that no two literals in a clause are associated with the same
variable. We will assume that k is fixed (independent of n and r), and we use k-SAT in
place of SAT when referring to instances generated by M. The problem of finding a satis-
fying truth assignment for an instance of k-SAT or verifying that no such truth assignment
exists is NP-hard if k > 3 ([12]). The model M(n,r,k) has the interesting property [10]
that if n/r < ln(2)/(- ln(1 - 2-k)) then the average number of truth assignments that
satisfy random instances of k-SAT is exponential in r and if n/r > ln(2)/(- ln(1 - 2-k))
then almost all random instances have no satisfying truth assignments (that is, they are
unsatisfiable).

Surprizingly simple and fast algorithms are very effective at finding satisfying truth
assignments when at least one exists if instances of k-SAT are generated according to
M(n, r, k). For example, the unit-clause algorithm is: repeatedly assign values arbitrarily
to variables in random order until some clause has just one non-falsified literal (a unit
clause), then assign to the variable associated with that literal the value which satisfies the
unit clause and repeat these two steps until all variables have been assigned values. In [5]
it is shown that the unit-clause algorithm finds a satisfying truth assignment for a random
instance of k-SAT with bounded probability under M(n,r,k) if n/r < (2-/k)((k -
1)1(k - 2)) -2. A generalization of the unit-clause heuristic (choose some variable that
appears in a smallest clause and assign to it the value which satisfies that clause) is shown
in [5] to find a satisfying truth assignment to almost all random instances of k-SAT if
n/r < (.46 * 2k/(k + 1))((k - 1)/(k - 2 ))k - 2 -- 1 and 4 < k < 40 and if 40 < k and
n/r < 1010 (for practical purposes this is all ratios of n/r). The following algorithm is

an improvement to the unit-clause algorithm: repeatedly assign a value which satisfies
a unit clause or, if no unit-clauses exist, a value which satisfies most remaining clauses
(instead of assigning values arbitrarily). In [4] it is shown that this improvement results in
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an algorithm that finds a satisfying truth assignment for a random instance of 3-SAT with
bounded probability under M(n, r, 3) when r/r < 2.9. Similar results have been obtained
for other instance distributions (see, for example, [9], [13] and [15]).

Although the algorithms of the previous paragraph involve no backtracking, the heuris-
tics for choosing variables and values presented in those algorithms can easily be incor-
porated into a backtrack structure. In fact, the Davis-Putnam Procedure (DPP), given
in [6] and [7], includes the unit-clause heuristic. Thus, the results mentioned in the pre-
vious paragraph apply direcdy to DPP in the case that it stops when a satisfying truth
assignment is obtained. The heuristics employed by DPP are important since without
them DPP would almost always require time exponential in r for any fixed ratio of n to r

([10], [11]). In this paper we investigate how important these and other heuristics are to
backtracking when we are interested in verifying that no satisfying truth assignment exists
for an unsatisfiable instance of k-SAT. The class of heuristics we consider, when applied

to simple backtracking, produces the class of problem solving procedures known as Search
Rearrangement Backtracking (SRB) and discussed in [2], [14], [16] and [17].

We present SRB as an algorithm in which clauses are represented as sets of literals
and instances are represented as collections of clauses. In this representation, under a

partial assignment of values to variables, a false literal is removed from a clause and a
true clause is removed from an instance. Let H(I) be a function that maps instances
I of SAT to boolean variables in 1. The H function represents a wide class of heuristics
for dynamically choosing the next variable to eliminate in a backtrack search. We use the
convention that the positive literal associated with variable v is denoted v and the negative
literal associated with variable v is denoted V. Search Rearrangement Backtracking applied

to I is

SRB(I):

If I has a null clause then return "UNSAT"

Else if I is empty then return "SAT"
Else

V - H(I)

I -{c - {i} cE Iv c}

12 {c - v}c I,c E c}
If SRB(Ij)-"UNSAT" and SRB(1 2 )="UNSAT" then return "UNSAT"

Else return "SAT"

In SRB, 1 is the subinstance of SAT obtained from I by assigning the value true to variable
v and 12 is the subinstance obtained by assigning the value false to v. Although it is
not necessary to do so, we have restricted H by forbidding it to choose the same variable

2



twice in the same branch of a backtrack search tree. A computation in which a variable is
selected twice in the same branch can always be transformed to a shorter computation in
which no variable is selected twice in the same branch. Therefore our lower bounds using
restricted H functions apply to all H functions. Our H function is such that SRB does
not include algorithms where the choice of v is determined randomly. However, there is a
best H(I) for every I (which minimizes the time to develop a refutation for I) and this H
will perform no worse than any randomized method for choosing v. Therefore, our result

provides a lower bound for randomized methods.

Note that SRB is actually the class of all backtracking algorithms for instances of SAT
which invoke backup when some clause has become falsified or a satisfying truth assignment

cause dynamic or static variable elimination, and need only return a value in finite time. An

interesting class of backtracking algorithms, known as Multi-Level Search Rearrangement
Backtracking algorithms, were the inspiration for this paper. These algorithms, as analysed
in [2], [14], [16] and [17], for example, fall into the class SRB if the computational effort
required to evaluate potential variable eliminations is allowed to show up as part of the
search tree. The H functions associated with these algorithms are fairly complicated and
involve looking many levels deeper into the search tree to pick the next variable elimination
which is most likely to result in a small subtree. The results of [2] and [17] are that
the H function has a significant impact on search tree size. For example, in [17], 3-SAT
instances containing 4096 clauses composed from 256 variables (n/r = 16) were solved by
Two-Level Search Rearrangement Backtracking using 10-"7 as many search tree nodes, on
the average, as ordinary backtracking.

The most important previous work on average case analysis of backtracking algorithms
for the Satisfiability problem using the model M(n,r,k) appears in [3] and [16]. The
algorithms of both papers search for all solutions to a given input. In [3] it is shown that,
under M(n,r,k), if n/r = r' - ' where 1 < a < k, a constant, then ordinary backtrack trees
contain at least e(r( - )I - 

1)) nodes on the average. Recall that, under the condition of the
previous sentence, almost all inputs have no solutions. Therefore, the result of [3] implies
that ordinary backtracking requires exponential average time to verify unsatisfiability if

n/r = r - , 1 < a < k, but the exponential is sublinear and decreases with a until
. a = k. When a > k (that is, n/r > rAk-') then results in [3] imply that ordinary

backtracking requires polynomial average time. In [161 the same kind of results are obtained
for Simple Search Rearrangement Backtracking. In particular, over the range 1 < a < k--1,

* Simple-Search-Rearrangment- Backtrack trees contain at least e9 ( 
h- ° -I)/(b - )) nodes on

the average. Thus, Simple Search Rearrangement Backtracking has exponentially better

average case performance than ordinary backtracking if n/r = r" - , I < a < k - 1.

3
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The algorithms of [3] and [16] may be regarded as specific forms of SRB (that is, specific
H functions) if the "look-ahead" effort is taken into account. This paper shows that no
matter how clever the H function, even if it is vastly improved over another H function,
it will not be clever enough to yield polynomial average time on almost all unsatisfiable
instances of k-SAT if n/r(n) = o(n l / lln(')) and n/r(n) > ln(2)/(-ln(1 - 2-k)) for all

n>0.

We are interested in the performance of SRB when inputs are almost always unsatisfi-
able; that is, when inputs are generated according to M(n, r, k) and n/r > ln(2)/(- In(l -
2-k)). We prove that all algorithms in the class SRB require time exponential in r almost

always when n/r = A where A is fixed and is greater than ln(2)/(- ln(1 - 2 )). The proof
itself is interesting because it relies on a structural property of instances of k-SAT which
must be present in almost all random instances and cannot be present if the search tree
corresponding to the execution of SRB on unsatisfiable instances is small. The property,
loosely speaking, is that the number of pairs of clauses containing literals associated with
the same variable is small if n/r = A for any fixed A. Although unsatisfiable instances of
k-SAT are generated under M(n,r,k) when n/r < ln(2)/(-ln(1 - 2 -h)), we are unable
to use the property mentioned to extend the results to that range because almost all in-
stances in that range are satisfiable (so it is possible that almost all instances have the

property but almost no unsatisfiable instances do). We also show that SRB requires su-
perpolynomial time if n/r = o(ni/hI(n)) and limn,.. n/r = oo.

We also show that the same result applies to any form of DPP. DPP looks for unit-

clauses and pure-literals. For our purposes, a pure-literal is a variable which appears only
as a positive literal or as a negative literal in I. DPP is like SRB in the sense that there
is some heuristic function H which selects the next variable to be assigned a value. The
heuristic function of DPP selects a pure-literal next or, if no pure-literals are present, a
unit-clause next or, if no unit-clauses are present, a variable with highest "weight". DPP
differs from SRB in that either I1 or 12 but not both is used as a recursive argument to

DPP when the selected variable is a pure-literal in I. It is this feature of DPP that prevents

us from directly applying the results to DPP. However, we will show how to design an SRB
algorithm from a given DPP algorithm which runs faster (generates fewer nodes) than
the DPP algorithm if the given instance is unsatisfiable. This implies that the result also

holds for DPP.

The results we get are pessimistic and are possibly surprizing to those familiar with
a result of Purdom [14] which states that even ordinary backtracking can verify unsatis-

fiability in polynomial time, on the average, for a variety of relationships between model
parameters. Purdom's random clause model and model M have certain similarities. In
both models n clauses are independently constructed from r boolean variables. But, in the

4
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random clause model, instead of a fixed number of literals per clause, each literal appears

independently in a clause with probability p. Thus, if we set 2pr = k, clauses have k liter-

als, on the average, as for model M. Also, if n/r > ln(2)/(- ln(1 -(1 -p) t )) then almost all

instances are unsatisfiable. If 2pr = k this condition is nearly n/r > ln(2)/(-ln(1- e- k/ 2 ))

which is similar to the condition that almost all instances are unsatisfiable in model M.

The results of Purdom's work in this area are that various backtracking algorithms exhibit

very different average case behavior depending on the values given to parameters. Pur-

dom's results are interesting (and parallel our own results) because they show that these

algorithms are fast on the average if instances are usually "very" unsatisfiable, are slow

if instances are "moderately" unsatisfiable or "moderately" satisfiable (not too many lit-

eral links between clauses), and fast if instances are "highly" satisfiable. Model M also

has this property. When n/r(n) > (r(n))k- 1 , or n/r(n) _ ln(n)/n there are SRB algo-

rithms that almost always solve problems in polynomial time (see [3] and [15]). This paper

is concerned with the range ln(2)/(-ln(1 - 2-k)) < n/r < o(n'/In (n)), which is in the

intermediate region for model M.

A result of [14] is that if 2pr = k, k fixed, then for n/r big enough, ordinary back-

tracking requires polynomial time, on the average. This result appears to be strikingly

different from ours but can be accounted for in the following way. Under the random

clause model, the probability that a random instance contains a null clause (no literals) is
1 - (1 - (1 - p)2 -)n which is 1 - (1 - e-)n in the limit if 2pr = k. But, if a null clause

appears in the given instance, backtracking stops and states the given instance is unsatisfi-
able without doing any searching at all. The time required by backtracking in that case is

the time to locate a null clause which is O(n) at worst. If the time required by backtrack-

ing to verify the unsatisfiability of instances that do not originally contain a null clause

is (1 - e-k) - n (that is, exponential in n) then the average time required by backtracking

is O(n) . (1 - (1 - e-1)n) + (1 - e-k)n(1 - e-k) - n = O(n). Thus it is possible that all
or nearly all random instances with no null clauses which are generated under the ran-

dom clause model with 2pr = k are solved in exponential time by backtracking and yet

the average time for backtracking is polynomial in n. Model M does not generate any null

-i clauses so our result is not inconsistent with polynomial average time under the random

aclause model not only for ordinary backtracking but for more sophisticated forms of back-

tracking such as the algorithm in [17]. Another way to look at the relationship between

our result and the results under the random clause model is to regard model M as gen-

erating a very small and non-easy subset of the instances that the random clause model

generates.
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2. Analysis

We use a binary tree, denoted T1(H), to model the execution of SRB for a particular H

function on a given instance I of k-SAT in the customary manner. Associated with each

non-leaf z in TI(H) is a boolean variable v(x) contained in I and a subinstance I(z) of

I. Associated with the edge connecting z to its left (right) child is the interpretation that

v(z) is assigned the value true (false), respectively. Associated with a path from the

root of T1(H) to any node z is the partial assignment P(z) of values to the variables

corresponding to nodes visited on that path except for z. Specifically, P(z) is a set of

variable/assignment pairs (v +- t), one pair for each v associated with a node on the path

from the root down to but not including z, where t is true (false) if the left (right) son
of the node associated with v is on the path to z. We defer a discussion on the meaning

and determination of I(z) until we develop some intuition about T1(H).

Associated with leaves and edges of TI(H) are labels corresponding to clauses in I.

Let each clause in I be given a name that uniquely identifies that clause. We label every

leaf z of T 1(H) with the name of the clause that is null under P(z), if at least one clause

is null under P(z). If more than one clause is null under P(z) then z is labeled with the

name of one of the null clauses arbitrarily. If no clauses are null under P(z) then z is given

no label. We associate with each edge of T1(H) a set of literal/clause-label tuples (called

edge labels) as follows. Let z be a non-leaf of T 1(H) with left child y and right child z.

Let (z,y) be the edge connecting x to y, let (z,z) be the edge connecting z to z. Let v(z)
be the variable associated with z. If I is a label given to a leaf of the subtree of T1 (H)

having y (alternatively z) as root, and the literal V(z) (alternatively v(z)) is in the clause

corresponding to I then (v(z), 1) (alternatively (v(z), 1)) is a member of the list of labels

associated with (x, y) (alternatively (z, z)). If I is in an edge label associated with edge e

then, for brevity, we say I is associated with e.

Figure 1 contains an example of the labeling of leaves, association of labels to edges,
and the association of variables and subinstances to nodes of a subtree of T1(H) rooted at

z given the instance

I f12,1 VY~14 )(1t'31 V51 V6)(IU2i ,V3 1V4 )(V2 , V-5,v 6 )(VI , V2, V3)
L

and some H function where z is such that P(z) = {(vs -- false),(v6 +- false)}. To

simplify the figure we have shown only the clause labels associated with edges: the literals

of the edge labels that are actually associated with edges are implied. If z is a leaf of

TI(H) and I labels z, then the label I is associated with exactly k edges on the path from

m- the root of Tt(H) to z (namely those edges which represent the partial truth assignment
which falsifies all k literals in the clause labeled 1). If z is not a leaf and has left child

y and i'ight child z and the edge label ( (x),l) is associated with the edge (z,y) then 1

6



cannot be associated with any edge in the subtree of T1(H) rooted at z for the following

reasons: (1) v(z) cannot be associated with any node below and including z, (2) the clause
labeled 1 must contain v(z), and (3) complementary literals are not allowed in the same

clause (so (v(z), 1) cannot be associated with (z, z)). Consequently, 1 cannot be associated
with any leaf under z. Similarly, if the edge label (v(z), 1) is associated with (z, z) then I
cannot be associated with any edge in the subtree of T1(H) rooted at y and cannot label

a leaf under y.

We now define I(z), a subinstance of I associated with node z. I(z) is the subset of
clauses in I that label leaves below z. Note that even if a clause labels many leaves below

z it appears only once in I(z). Also note that clauses in I(z) have exactly k literals.

In this paper we are concerned with verifying unsatisfiability. If an instance is unsat-

isfiable then TI(H) is a refutation tree and has the property that all its leaves are labeled
since backtracking is only due to the emergence of a null clause. From now on it will be

understood that T 1(H) is a refutation tree. We make the following simplifying assumption:

Assumption S:

At least one label is associated with every edge of TI(H).

If there exists an edge (z, y) with no associated edge labels then a computation involving
fewer nodes is possible: simply replace the subtree rooted at z with the subtree rooted at
y. Thus, lower bounds derived from the simplifying assumption will apply to all search

strategies. The effect of this assumption is to allow backtracking using the pure-literal
rule. We will see this more clearly at the end of the next section when we consider the

Davis-Putnam Procedure.

Each clause label associated with a leaf of T1 (H) must also be in edge labels associated
with k edges on the path from the root of T1(H) to that leaf or else some clause labeling

a leaf is not falsified by the truth assignment associated with that leaf. Furthermore, if a

clause labels more than one leaf then the k edges on each path from the root to such a leaf

must all be associated with the same k variables and assignments (namely those that make
the clause false). Thus, for any node z in a refutation tree such that p(x) distinct leaf

labels exist below z, the number of distinct edge labels in T1(H) due to those leaf labels is

kp(z). For every node z let c(z) be the number of distinct edge labels at or below z and
define h(z) = kp(z) - c(z), the number of edge labels above x which are due to leaf labels

below z. Clearly, if h(z) > 0 then z cannot be the root of a refutation tree. In Figure 1,

h(z) = 3 * 5- 11 = 4 with specific contributions from (vs,c 2 ), (v6 ,c 2 ), (V5 ,C4 ) and (v 6 ,c 4)
which are the edge labels above x that are due to the clauses labeling leaves below z. We

will show that h(z) > 0 in a small tree, with probability tending to 1. This will be used

to show that T 1(H) cannot be small, with probability tending to 1.

7
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We also introduce a function common(x). Let z be a node in T1(H), let c(z) be the
number of distinct edge labels at or below z, and let var(z) be the number of distinct
variables associated with nodes at or below x. We define common(z) = c(z) - var(x). For

example, in Figure 1, c(x) = 11 and common(z) = 7.

Finally, we define a function Icomm(I'). Let I' be any collection of clauses. Then

Icornm(P) is the total number of literals in I' that are associated with variables that appear

two or more times in P minus the number of distinct variables of that kind. Icomm(I') is
also the total number of literals in I' minus the number of distinct variables in I' since there

is exactly one literal in I' for every variable that appears once in I'. Note the similarity
between Icomm and common(z). However, Icomm is defined for any collection of clauses

and not just those sets of clauses corresponding to I(x) where z is a node of T1(H). We
even allow Icomm(I') to be defined if one or more clauses in I' contain duplicate or
complementary literals. We make use of Icomm to bound common(z) in the following
way. Let I be any instance of k-SAT. For any H function, let z be a node in T1 (H) a-nd

suppose I(z) contains p(z) clauses and common(x) > p(z)(1 + 1/ln(p(x))). Then there

is a subset I' of I containing p(x) clauses such that Icmm(I') > p(z)(1 + 1/ln(p(x))),

namely all the clauses of I(z). Hence we may make the following

Observation 1:

Suppose that no subset I' of clauses in an instance I of k-SAT which contains p clauses

is such that Icomm(I') > p(l + 1/In(p)). Then, for all H functions, there does not
exist a node z in Tx(H) such that II(x) = p and common(z) > p(1 + 1/ln(p)) where

I(z)j is the number of clauses in I(z).

We will use observation 1 to show that if n/r(n) doesn't grow too fast then, with

prr-bability tending to 1, common(x) is small for every node x such that the number of
distinct clause labels below x is O(n,(n)), where c(n) is not very small asymptotically. The
following theorem and corollary state this more precisely.

Theorem 1:

Let I be an instance of k-SAT generated according to M(n,r,k). Let W(n) be any

function that decreases asymptotically to 0 and is such that lim-,,_ n- (
n
) = 00.

Suppose that n/r(n) = A(n) obeys A(n) = o(n(n)) and A(n) > ln(2)/(- In(1 - 2-k))

for all n > 0. Let ((n) = 1/(ln(ekk+2 (n)) + 3). Then the probability that there

exists a subset I' of I with p < n'(n) clauses and such that Icomm(I') is greater than
p(l + 1/ln(p)) tends to 0 as n tends to infinity.

Proof:

(In the rest of this proof and in the remaining proofs and discussion in this paper we

8
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use c for E(n) and A for X(n) to avoid clutter. The probability that there exists a subset
I' of I containing p clauses such that Icomm(I') > a is less than the average number

of such subsets. The average number of such subsets is the sum of the probabilities
that each p clause subset I' of I has Icomm(I') > a. This is (n) times the probability

that Icomm(I') > a where I is a random p-clause subset of I. The probability that

Icomm(I') = i is the number of ways to construct I' such that Icomm(I') = i divided
by (2 k(r))P, the number of possible p-clause subsets of I. The number of ways to
construct I' such that Icomm(I') = i is less than the number of ways to construct I'

such that Icomm(I') = i if clauses were allowed to have duplicate or complementary

literals. But the number of ways to construct I' such that Icomm(I') = i and I'
is allowed to have duplicate or complementary literals in the same clause is 2kp, the

number of ways to assign positive and negative literal values to kp literals, times the
number of ways to partition kp literal place-holders into kp - i variable groups with
labels taken.from 1 to r. Using braces to denote Stirling numbers of the second kind,
.the latter number is {kP-i} (k-,)(kP - i)! (see [18], pages 133 and 134 for a detailed

explanation of this quantity). It can easily be shown that ( ) > (r/k)' for all integerskpk

0. Furthermore, from the appendix, {kP-} < (kp)2i/i!" Then, the average

number of subsets of I containing p clauses and such that Icomm(I') > a is less than

(n) kP f______________

\\) (r/k)kP

kp P kp-i

'xp) (r/k) kP
i=a p

=(n) Zp {kP Prilk p

= a
- i=a

( kP (kp) 2 k kp
< i= i!ri (1)

Defining a new variable j = i - p, and bringing (n) into the summand, we see that

(1) is equal to

kp,-p (kp) 2 (j+P)n!kkP

- ( + p)!p!(n - p)!r(j+P)

j=a-p
kp-p \/~ p)(ip)(n /12nek p

j=a-p 27rV (j +p)p(n - p)((]' + p)/e)(j+P)(p/e)P((n - p)/e)(n-Pr+P)(2

by Stirling's formula for factorials (that is, x! = v/2~x-(x/e)ze/12z,X > 0,0 < 0 < 1).
Rearranging terms and noticing that e/1 2 n /7r < 1 since n > 2, (2) can be bounded

9
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from above by

( II- P ( n r -) (k / - P) , .i k , P n

r ( n) K- p rjpp(j + p)(3+P) 4(j + p)p(n - p)
j=a-p

kpa-pkp p: (, ) n(n P) (k~/-p)2 (j+P)kkP

j a)P (nj- ' ripP(j + p)(i+P)

since n > 2, e < 1/3 (and therefore p < n'/ 3 ), and p > 1 implies

/ n I 1

4(j + p)p(n - p) - 4(j+p)p(-n-/ 3 ) < 1.2 V(j + p)p

(actually we could derive a similar upper bound for e < 1 but it is unnecessary to do

so to get our main result). By making use of the fact that (1 - p/n)(n- ) > e- ' if n
and p are positive and using n/r = A we can make the last sum

. (e'kk+2 A)P(ek 2 )ppp 2i (3
j=a-p rj(j+p)P(j+p)j

Suppose a = p + p/In(p) (that is, j _> p/ In(p)). Then for sufficiently large n

ek2p 2 < ek 2p <1/2

r(j + p) r

since A = o(nw(n)) and p < n" where c < 1/3. Furthermore,

( e2 kk+2 pA) ) 2
T o e ( 2 +P? < (e kk+ 2A)p = (e2kk+2')ln(P)(p/ln(p))... (U + p)P'

Therefore, the summand of (3) is less than

(1)U P/'n'P)) (P~ne2kk+32ek2p) 
PI p

*' for sufficiently large n. Hence the sum (1) is less than
(Pt(e2h+2 2p)ekp/n(p)

2

for sufficiently large n if a p(l + 1/In(p)). Thus, the probability that there exists a

subset I' of I containing n' or fewer clauses such that Icomm(I') > p(l + 1/In(p)) is

less than
n2 (PIn(e 2 k 2 )ek2p p/ In 

(4)
t p=2

10
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The derivative of the summand of (4) with respect to p is

2 ( l n ( e 2 k k + 2 A ) + 1 + l n ( e k / r ) I 1n - ) (-Ie l k k + A+ e k 2 p / n ( p )

For sufficiently large r, In(ek 2 /r) is a negative number. Hence, for sufficiently large

r, ln(ek 2/r)(1 - 1/ln(p))/In(p) becomes more positive as p increases when p > 2.
Furthermore,

(pn(e'kk+
2A\)+l )ek 2 ~plInf(p)

r)

increases as p increases, p > 1. Therefore, the derivative of the summand of (4) is

monotonically increasing with p, p > 2, and is maximum at either p = 2, p = 3 or

p = n' . At p = 2, it is straightforward to check that for any e < 1/3

2 (2(n(e2kh+;A\)+)ek 2) 2 / ln(2)<n-2

for large n if A - o(n"(n)) and k is fixed. Similarly for p = 3. At p = n', where

c = 1/(ln(e2kk+ 2 A) + 3), we have

2

= 2 n ( l  (2 h2 ) + )l n k2 n ) / l(n)

< 2 (n -2 ek2,\) 'n ' / e In (n) < n - 2,

for large enough n if A = o(n'(")). Since the summand of (4) has a maximum less than

n- 2 c, the sum (4) is less than n-'. But 1/ln(n') = (w(n) In(n)+ln(e2 kk+ 2)+ 3)/In(n)

which tends to zero as n gets large so n - ' tends to zero. This proves the theorem.

Corollary 1:

Let I be an instance of k-SAT generated according to M(n,r,k). Let w(n) be any

function that decreases asymptotically to 0 and is such that lim,_n ' (' ) = 00.

Suppose that n/r(n) = A(n) obeys A(n)= o(nw(n)) and A(n) > ln(2)/(- In(1 - 2-k))

for all n > 0. Then the following statement is true with probability tending to 1. For

all H and all nodes x in T(tt) such that the number of distinct clause labels below

x is p < n1/(n(k+lA(n)1 * ) cornmon(x) < p(1 + 1/ln(p)).

Proof:
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-" Follows from Theorem 1, observation 1 and the fact that almost all instances are,
, unsatisfiable if n/r > In(2)/(- ln(1 - 2-" )).

' For the sake of simplicity we drop the subscript from Tj(H) in what follows. Corollary

I gives a property tihat any search rearrangement backtrack tree has with probability
tending to 1 if instances are generated according to M(n,r,k). In Lemma 1 we show
that h(x) _> kp(x) - 2 * crnnon(x) for all nodes x in T(H). This and the fact that
k > 3 means that, with probability tending to 1, h(x) >_ p(x)(1 - 2/ln(p)) for any node

Sthat is the root of a subtree containing p(x) < n", E = 1/(ln(e k+2, + 3), distinct

clause labels. In Lemma 2 we derive an important property shared by almost all random
-r graphs we consider. The property is tOat no variable appears in more than (ln(n) + 1)k)

clauses. In Lemma 3 this property is used to show that, with probability tending to 1,
h(x) >! h(y) -(ln(n) + 1)kA where x is a node in T(H) which is the parent of y (that is, the
h function cannot decrease by more than (ln(n) + 1)k A per node as we move toward the root
of T(H)). So, with probability tending to 1, for any node x in T(H) such that h() > L, the
number of nodes on the path from x to the root of T(H) is at least L/(In(n) + 1)kA

<. (Theorem 3). In Theorem 4 we show that, with probability tending to 1, there exists
"- ' a node x such that n'/2 > p(x) > n'/'/2. This means there is at least one node x in

T(H) such that h(x) > n c/2(1 - 4/ ln(nt)) and that the number of nodes on the path from
that node to the root is n'/'(1 - 4/ ln(n'))/(ln(n) + 1)k ,. W e slice off all nodes in T(H)

.- that are deeper than n /2(1 - 4/ ln(nt))/(ln(n) + 1)kA and call each node at that depth a
li bottomnode. In Theorem 5 we show that, with probability tending to 1, on the path from

I'..

Sall bottomnodes to the root there are at least 2n'/4(f -4/ln(n))/(ln(n) + 1)ka nodes

for which both children have bottomnodes as descendants. This implies, with probability
tending to 1, an exponential treesize for T(H) if A is fixed and superpolynomial treesize if

" ~o(nl t ( ) =A)(n) and limn-. A(n) = oo (Theorems 6, 7 and 8).

First we derive some relationships between h(), common( ) and vat(a)

Theorem 2:
For all H and in T(H), h() =kp(i) - common(x) - van(a).

Proof.
Recall that coofmon(x) + vatr() is the number of distinct edge labels at or below c.
The rest follows from the defiition of h(v).

Theorem 2 leads to the following sful relationship between h(x) and common().

Lemma 1:
For any H function and x in T( 1), h(f) nokp() - 2 common().

12
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Proof:

Since every variable below x is associated with at least two distinct edge labels, c(z) >

2 * vat(x). Therefore, var(z) < common(z). This and Theorem 2 imply h(x) >

kp(x) - 2 * common(x).,.

The next two lemmas and theorem show that, for any H function and any node z in

T(H) such that h(a) > n', the length of the path from root of T(H) to X is great, with

probability tending to 1, if A = o(n,(n)) and A(n) > ln(2)/(- ln(1 - 2-k)) for all n > 0.

Lemma 2:

Let w(n) be any function of n that tends to 0 asymptotically and is such that

limn,,o n"', ) = oo. The probability that some variable appears in more than (ln(n) +

1)kA(n) clauses of an instance of k-SAT generated according to M(n,r,k) tends to

0 as n tends to infinity if A(n) = o(n " (")) and A(n) > ln(2)/(-ln(1 - 2-k)) for all

n>0.

Proof:

Let v be a variable taken from V. The average number of clauses containing v is

kn/r = kA. The probability that v is in at least (ln(n) + 1)kA clauses is

n () ()' 1-_k~ < e- 1 n 2( n ) A:X / 3

i=(ln(n)+I)kx

from thc Chernoff bound for binomial distributions [1] and [8]. The average number

of variable6 that appear in at least (ln(n) + 1)kA clauses is therefore

re- 1n2(n)kX/3 r r

- eln(n)In(,)kX/3 nln(n)kA/3

1
= --- 0 as n--+ oo.

Anln(n)kA/3-1 
j.

Since the average number of variables that appear in at least (ln(n) + 1)kA clauses
is an upper bound on the probability that there exists a variable that appears in at

least (ln(n) + 1)kA clauses the lemma is proved.

In what follows we show that the search tree for any H must be exponentially large

if the input has the properties stated in Lemma 2 and Corollary 1.

Lemma 3:

Let w(n) be any function that tends to zero asymptotically and is such that lim,,. n"'( n )

oc. The following statement is true with probability tending to 1. For all H func-

tions and parent nodes z in T(H) with child y, h(x) > h(y) - (ln(n) + 1)kA(n) if

A(n) = o(n,(n)) and A(n) > ln(2)/(- ln(1 - 2 -k)) for all n > 0.

13
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Proof:

Let there be s labels associated with the edge connecting z with y and s, labels

associated with the edge connecting z to z. Let N,,(i) denote the number of clauses

that appear as edge labels i times in the path from y to a leaf of T(H) labeled by
such clauses and in the path from z to a leaf of T(H) labeled by such clauses (note
that the labels associated with these clauses contribute k - i to h(x) but twice this to
h(y) + h(z)). Therefore,

&

h(z) = h(y) + h(z) - (sy + s.) - Z(k - i)Nv,(i). (5)
i=1

Observe that in equation (5) h(z) - Ek I(k - i)NV,(i) >_ 0. Hence h(z) >_ h(y) -

(sV + s,). But, from Lemma 2, the probability that no variable appears in more
than (In(n) + 1)kA clauses tends to 1. Since the variable associated with X is in

clauses with labels associated with edges connecting x to its children, we have that
sV + S" < (In(n) + 1)kA for all H and x in T(H) with probability tending to 1. The

lemma follows.

Theorem 3:

Let L(n) be any positive integer function of n and let w(n) be any function of n that
tends to 0 asymptotically and is such that limn,.o n" = oo. The following statement

holds with probability tending to 1. For all H functions, the pathlength of any path

from the root ofT(H) to a node x such that h(x) L(n) is at least L(n)/(ln(n)+1)kA

if A(n) = o(nw( " )) and A(n) > ln(2)/(- ln(1 - 2-')) for all n > 0.

Proof:
Follows immediately from Lemma 3 and the fact that h(root(T(H))) = 0.

Theorem 4:

Let w(n) be any function of n that tends to 0 asymptotically is such that

limn-,n(n) = oo. Let 0 <-y ' 1 be fixed and let c(n) P i/" .'+c+A(n)) + 3).

The following statement is true with probability tending to 1 all H functions and

k > 3, there is at least one subtree of T(H) with at 1-V -" k")/2 and at most n"'(n)

distinct clause labels below its root if A(u) = o(n ' ' n) ,Inu A(n) > ln(2)/(- ln(1 -2-))

for all n > 0.

Proof:

From the root of T(H) move toward i y visiting nodes as follows: at each visited

node z, visit next the child -f z w' a has the greatest number of distinctly labeled
leaves beneath it (decide ties ai ,itrarily). Call the path just traced P. Let x be

14
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a node on P. The number of distinctly labeled leaves beneath the parent of z is
no greater than twice p(z) because the number of distinctly labeled leaves beneath
the sibling of z is less than p(z) (otherwise we would have moved in the direction of
the sibling on the way down). Furthermore, the number of distinctly labeled leaves

beneath the parent of x is at least p(x) + 1 since the clause labeling the sibling of z
cannot be below x. Thus, if we move up a nodes from y we will be at a node which
has at least j + 1 and at most 2' distinctly labeled leaves beneath it. We can certainly
move up P from y as long as the number of distinct clauses beneath the currently
visited node is less than 8 since at least 8 clauses are required for a refutation of k-
SAT where k > 3. From Lemma 1 and Corollary 1 we have that, for any node x on
P such that p(x) < n', h(x) > p(z)(l - 2/ln(p(z)), with probability tending to 1.
Thus, if 8 < p(x) < n-f', 0 <y ! 1, then h(x) > 0 hence x is not the root of T(H).
Therefore, we can move up P from y to the last node z such that p(z) > n'y'/2. Since
p(father(z)) can be at most double p(z) we have p(z) < n~ff. The node z is the one

required to prove the theorem.

We call a node that is the root of a subtree of T(H) containing between n'/ /2 and
n /2,  - 1/(In(e+,) + 3), distinct clause labels a bignode. Observe that within
the proof of Theorem 4 it was shown that if z is a bignode then, since k > 3, and
n c/2/2 < p(x) < n'/2, h(x) > n"/ 2 (1 - 4/(eln(n) - 21n(2)))/2. Therefore, Theorems
3 and 4 say that, with probability tending to 1, bignodes exist for every H function
and that all paths from the root of T(H) to bignodes must contain at least n'/ 2(1 -
4/(cln(n) - 21n(2)))/2(ln(n) + 1)kA nodes. Call a node at depth n'/'(1 - 4/(fln(n) -

2 ln(2)))/2(ln(n) + 1)kA a bottomnode. All bignodes must be descendents of bottomnodes.
Hence at least one bottomnode exists in T(H). The next two theorems tell us that,

for any H function, the number of bottomnodes in T(H) is exponential with probability
tending to 1 if A is fixed and A > ln(2)/(- ln(1 - 2 -k)). Theorem 8 says that the number
of bottomnodes is superpolynomial with probability tending to 1 if A = o(nl/ln(n)) and
A > ln(2)/(- ln(1 - 2 -k)) for all n > 0.

Theorem 5:
Let w(n) be any function of n that tends to 0 asymptotically and is such that
limn,,. n(n) = oo. Let (n) = 1/(ln(elkk+2 A(n))+3). The following statement holds
with probability tending to 1. If A(n) = o(n"(n)) and A(7 ) > ln(2)/(-ln(1 - 2-k))
for all n > 0 then, for all H functions, on every path from the root of T(H) to a bot-

tomnode there are at least

nE(n)/4(1 - 4/ ln(n(n)))/(ln(n) + 1)kA(n)

nodes z such that both children of x are ancestors of bottomnodes.

I
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Proof:

The restriction on A causes random instances of k-SAT to be unsatisfiable with prob-
ability tending to 1 so in what follows we can skip over the cases where the required

trees don't exist and consider only those trees which are refutation trees (that is, the
trees in which all leaves are labeled with clause labels). Consider any path P from
root to bottomnode in T(H). For some nodes on P both children are ancestors of
bottomnodes and for the remaining nodes on P exactly one child is an ancestor of

a bottomnode (we call the other child an Orphan and its subtree an Orphaned sub-
tree). Call nodes of the first kind Binary and nodes of the second kind Unary. The
Capital letters distinguish Binary and Unary nodes from ordinary binary and unary
nodes of a search tree. We use the terms Binary and Unary because Binary nodes
have two connections to subtrees containing bottomnodes and Unary nodes have only

one. It will be understood in what follows that Binary and Unary nodes are on P and
that Orphans and Orphaned subtrees are attached to Unary nodes. Let Pp denote
the number of distinct clauses labeling the leaves of Orphaned subtrees.

Suppose that Pp < n'/4. All of the clause labels associated with each edge connecting
an Orphan node with a Unary are different from the clause labels associated with all
other edges connecting Orphan nodes to Unary nodes since a clause label associated

with any edge cannot appear below the sibling of its endpoint. But Pp < n'/4 so
the number of Unary nodes is less than n'/4. Therefore, there can be no more than
n'/4 Unary nodes on the path from root to bottomnode. Since the number of Binary
nodes is the number of nodes on P minus the number of Unary nodes, and since the
number of nodes on P is n'/' (1 - (4/(ln(n') - 21n(2))) /2(ln(n) + 1)kA, the number
of Binary nodes on P must be at least

n"l (1- 4/(In(n') - 21n(2))) _ ne/4 > /4 (1- 4/ln(n'))

2(ln(n) + 1)kA (ln(n) + 1)kA

for sufficiently large n, and the theorem holds.

Now suppose that Pp > n'/ 4 . We know that no Orphaned subtree contains a bignode.
Each Orphaned subtree cannot contain more than n' /2 distinct clauses since otherwise
we could trace a path through the subtree, as in Theorem 4, and get to a bignode. Then

Pp < n' (an upper bound on the product of the pathlength of P and the maximum
number of distinct clauses below each Orphan of P). Let I(P) be the set of distinct
clauses labeling leaves of Orphaned subtrees. Let Bp be the set of edges on P which

connect a Binary node to its child on P. Each literal in I(P) corresponds to a distinct
edge label in Orphaned subtrees, edges connecting Unary nodes to their children, and
edges in Bp. Let hp denote the number of distinct edge labels which are associated

16
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only with edges in Bp and are due to leaves of all Orphaned subtrees. Recall that

T(H) is a refutation tree so Pp distinct clauses labeling leaves of T(H) generate kPp

distinct edge labels in T(H). Define Lp = kPp - hp. That is, Lp is the number of

distinct edge labels which are associated with edges connecting Unary nodes to their

children and edges within Orphaned subtrees and are due to leaves of all Orphaned

subtrees. Let Vp denote the set of variables which are associated with Unary nodes

and nodes in Orphaned subtrees. See Figure 2 for an example showing sets mentioned

above. Figure 2 also illustrates sets mentioned below.

In this paragraph we show that Icornm(I(P)) >! Lp - jVpj. Let VBDp denote

the set of all variables that appear at least two times in I(P) but are not in Vp.

These variables are associated only with Binary nodes. Let LUSp denote the set

of edge labels which are in edges that connect Unary nodes to their children and are

associated with variables that appear exactly once in I(P). Since there is one edge

label in LUSp for every variable that is both associated with a Unary node and in

I(P) exactly once, jVpj + IVBDp - ILUSpI is the number of variables in I(P) which

are in at least two clauses of I(P). Let LOUDp denote the set of edge labels which

are in Orphaned subtrees along P or are associated with edges that connect Unary

nodes with their children on P and are associated with variables that appear two or

more times in I(P). Let LBDp denote the set of edge labels not in LOUDp which

label edges in Bp and are associated with variables that appear two or more times in

I(P). Note that ILBDpl > IVBDpl since there is at least one edge label associated

with an edge incident on a variable in VBDp which is not in LOUDp. Recall that

Icomm(I(P)) is the total number of literals in I(P) that are associated with variables

that appear two or more times in I(P) minus the number of such variables. Then,

Icomm(I(P)) = ILOUDpl + ILBDpI - jVpj - IVBDpl + ILUSpI

> ILOUDpi - jVpj + ILUSpI.

But ILOUDpI+ILUSpI = Lp since LOUDpnLUSp = $. It follows that Icomm(I(P)) >

., Lp -jVpj.

Therefore, hp _ kPp - Icomm(I(P)) - jVpj.

In this paragraph we show that IVp < Pp. Create a forest T' from T(H) by removing

all nodes and edges from T(tt) except the Unaries, edges connecting Unaries to their

children, and Orphaned subtrees along P. Construct a tree T" from T' by appending

each Unary to the free edge of another Unary so that all Unaries are in the same

order as they were on P. Retain all edge label and variable associations that existed

originally. The number of variables associated with nodes in T" is, by definition,

IVpI (exactly the Unary nodes and Orphaned subtrees remain). Perform a depth first
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search on T" and mark leaves that contain labels distinct from all other previously

marked leaves. Eliminate all nodes that are not ancestors of marked nodes, edges on
paths to unmarked leaves and the unmarked leaves themselves. The result is a tree

containing a number of binary and unary nodes (lower case binary and unary nodes

are ordinary binary and unary nodes). Call the eliminated edges that were connected

to unaries "missing" (so there is one missing edge for each unary in T"). Except for
one Unary, Unaries on P can appear either as binaries in T" or as unaries in T" with

a clause in I(P) labeling the missing edge. The exception is the deepest Unary in P.

This Unary is the special unary node in T" and possibly has no clause in 1(P) labeling
its missing edge. The number of leaves remaining in T" is Pp, each one representing

a distinct clause. Except for the special unary, a variable v associated with a unary

node in T" must be the same as the variable associated with a previously visited node
in T". This is because some clause must label the edge missing from the unary and
the edge is missing because the clause has already been visited; but, since v is in the

clause, a node asscociated with v must have been visited. Consequently, except for

the variable associated with the special unary, every variable in T" is associated with

some binary in T". The number of binary nodes in T" is Pp - 1. Hence the number

of variables in T" (that is, jVpI) is at most Pp (after adding 1 for the special unary).

Thus, hp > kPp - Icomm(I(P)) - Pp. We next apply our familiar bound on

ICOMM(I(P)).

In what follows we make statements which are true for all H applied to almost all

instances of k-SAT generated according to M(n,r,k) if A(n) = o(n '-(n)) and A >
ln(2)/(-ln(1 - 2-")) for all n> 0; these conditions are omitted for brevity. Since

II(P)I = Pp < n' we can obtain from Theorem 1 that Icomm(I(P)) < Pp(1 +
1/ln(Pp)). Therefore, since k > 3, hp _> (k - 1)Pp - Pp(1 + 1/ln(Pp)) > Pp(1 -
1/ln(Pp)). Since Pp > n"/ " we have that hp > n"/4(1-4/ln(n)). The labels counted
by hp must be spread over edges in Bp. From Theorem 3, no edge in Bp can receive

more than (ln(n) + 1)kA labels. Hence the number of edges in Bp must be at least
n"/"(1 -4/ln(n'))/(ln(n) + 1)kA. Since there is one edge in Bp for every Binary node
on P, the number of Binary nodes must be at least n'/4(1 - 4/ln(n'))/(ln(n) + 1)kA
in this case. This completes the theorem.

Theorem 6:

Let T(H) be a search tree generated by SRB for any H function. If on every path
from the root of T(H) to a bottomnode there are at least s nodes whose left child and
right child are ancestors of bottomnodes then T(H) must have at least 2 ° nodes.

Proof:
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Compress T(H) by eliminating all nodes from T(H) which are not bottomnodes or
do not have two children which are ancestors of bottomnodes. The result is a binary
tree of depth at least s. The number of nodes in such a tree is at least 2'.

The following two theorems state the main results.

Theorem 7:

The following statement holds with probability tending to 1. For all H functions, SRB
requires 0(2n0) time, a > 0, under M(n,r,k) for any fixed A > ln(2)/(- In(1 - 2-k)).

Proof:

Follows from Theorem 5, Theorem 6 where s in Theorem 6 is

n /4(1 - 4/ln(ne))/(ln(n) + 1)kA

and e = 1/(ln(Ae 2 kk+ 2) + 3) and the fact that each node of T(H) must be visited and
requires at least one unit of time.

Theorem 8:

The following statement holds with probability tending to 1. For all H functions,
SRB requires superpolynonial time under M(n, r, k) for all functions \(n) satisfying
o(n I/ hnn (

-
)) = A(n), limn,, \(n) = oo,

Proof:

As in Theorem 7, the number of nodes in T(H) is at least

2 ( (itW- /1n , )n 4

(1-0 nA+1 )/(4n()
"

But O(ln(A))/ Inn = o(1/lnlnn) so the last term is

But \(n) = o(n /in Inn) so the last term is

2((l.(n),)-')n'/o(,-,()/,(n.>> = 21 /-((n(n)) -t

which grows too fast to be polynomial.

According to Theorem 8 superpolynon-ial time is achieved for a rather large range
of relationships of n to r. For example, we get superpolynomial time, almost always,
if n/r(n) = (ln(n))O for any constant 3. We have shown superpolynomial time, almost
always, for n/r(n) almost as high as n'/1n1() which is very nearly n to a constant power.
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3. Davis-Putnam Procedure

As stated in the introduction, the Davis-Putnam Procedure contains three principal com-

ponents: decomposing I into two subinstances I and 12, the unit-clause rule and the

pure-literal rule. It is the pure-literal rule that appears to be preventing the analysis

from carrying over. However we can show that for the Davis-Putnam Procedure with any

heuristic function there is a Search Rearrangement Backtracking algorithm which expands

fewer nodes of the search tree when inputs are unsatisfiable. This means that our result

holds also for the Davis-Putnam Procedure.

To see this, first develop a search tree for a given Davis-Putnam Procedure and input

I which is patterned after the search tree developed for SRB (that is, nodes are associated

with variables, leaves are labeled with clause names, edges are associated with leaf labels,

etc.). Observe any node z in the tree which corresponds to a point in the application of

the Davis-Putnam Procedure where the pure-literal rule is used for the last time before

backing up. That node has only one child which we denote by y. Create another child z

of x and subtree under z which is exactly the same as the subtree under y. Because the

pure-literal rule is applied at z, the edge (z, z) has no label associated with it. Therefore,

we can replace the subtree rooted at x with the subtree rooted at z and still have a search

tree corresponding to a verification of unsatisfiability; the difference is that there is one

less application of the pure-literal rule and the tree has fewer nodes. Continuing this

until all pure-literal applications are removed results in a search tree corresponding to

a Search Rearrangement Backtracking algorithm applied to I. This tree is smaller than

the one corresponding to the application of the Davis-Putnam Procedure on I and has the

property that there is at least one clause label associated with every edge. Therefore, the

results of the last section apply to any form of Davis-Putnam Procedure.

4. Conclusions
I.

We have presented an analysis which shows that any form of Search Rearrangement Back-

tracking requires 0(2" ) time, a > 0, for almost all instances of k-SAT generated according

to M(n, r, k) if n/r = X where X is fixed and is such that almost all instances are unsatisfi-

able. We have also shown superpolynomial running time for almost all instances of k-SAT

if A(n) = o(n'/ "I''(n)) and limn,-.o A(n) = oo. The proof of this is interesting because it

is based on a structural property of instances of k-SAT. We have shown that these results

also apply to any form of the Davis-Putnam Procedure.
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APPENDIX

Lemma:

{2-} -< "-, where {} denotes stirling numbers of the second kind.
YJ' : P ro o f:"

.- Prf-By induction on n.

Basis: { } 10/0!.

Induction Step: From the definition of stirling numbers of the second kind

{f>} =(n - ){fll+{flhl}

r. < (n - x) 1)2 1 + - by hypothesis
(x - X!

r,
n 2  [(n X)2 _2 (n X_ 2z]

Xz! n n

The lemma holds if the term within brackets is less than or equal to 1. We show this

'- as follows. Rewrite (!-.) 2 as e2z l (1 - 1/n). Notice that

n"r- n -1 )+l<l1+ n l

< (x) ( ) = I - =e02 -

p Therefore, the term in brackets is less than e22 (l - /n ) e- Ln-I-1/n) exln(I-1/n) <

'4
L

6,

.2

'I

'4
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CI C3 C4C24

VPV3

Figure 1: A subtree of Tr rooted at x showing leaf labels beneath the leaves and clause
* labels associated with edges (literals are implied). Variables associated with nodes are

shown inside the nodes. For this subtree I(x) = (01i, f2, iN,( 3, VS, V1)V, 3, V4)(V2, VS, VeS)(V 1 , f2, V3),
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U

e3  e4

0 B

*e 2  e2 el

To U

ebottomnode

e2  e2  e8  4

e2  e2 To

bottomnode

Binaries These nodes are marked B

Unaries: These nodes are marked U

Orphans: These nodes are marked O

Vp These variables are associated with unmarked nodes or nodes marked U, 0 or I

VBDp These variables are associated only with nodes marked B

I(P) : These distinct clauses label nodes marked I

Bp These edges are marked el

LOUDp These edge labels associate with e2 edges, e3 edges and some e3 e4 pairs

LUSp These edge labels associate with e3 edges not in LOUDp

LBDp : These edge labels associate only with el edges

Figure 2: Illustration of terms used in Theorem 5
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